👤

A baker is making a cake like the one at the right. The top layer has a diameter of 8 inches and the bottom layer has a diameter of 20 inches. How big should the middle layer be?

A Baker Is Making A Cake Like The One At The Right The Top Layer Has A Diameter Of 8 Inches And The Bottom Layer Has A Diameter Of 20 Inches How Big Should The class=

Sagot :

[tex] \large \mathbb{SOLUTION}[/tex]

[tex] \ \bold{(Median \: line \: theorem \: of \: trapezium)}[/tex]

  • [tex] \bold{DG \: = \: \frac{EF \: + \: CH}{2}}[/tex]

  • [tex] \bold{ \: \: \: \: \: \: \: \: \: \:= \: \frac{8 \: + \: 2}{2} }[/tex]

  • [tex] \bold{ \: \: \: \: \: \: \: \: \: \:= \: 14 \: (inches)}[/tex]

[tex] \bold{(Circle \: area \: formula)}[/tex]

[tex] \bold{Area \: of \: the \: middle \: layer:}[/tex]

[tex] \bold{ = \: \pi \: \times \: ( \frac{14}{2})^{2} }[/tex]

[tex] { \underline{ \bold{ = \: 49\pi \: (inches^{2} )}}}[/tex]

[tex] \large \mathbb{ANSWER}[/tex]

Therefore, [tex] \large{ \boxed{ \bold{49\pi \: inches^{2}}}}[/tex] is the answer of your problem!

Pray for Ukraine ❤

Answer:

49π inches²

Step-by-step explanation:

Solution:

{Median line theorem of trapezium}

DG = EF+CH

2

= 8+20

2

= 14 INCHES

{ Circle Area Formula }

AREA OF THE MIDDLE LAYER:

[tex]= \pi(\frac{14}{2}^{2}) = 49\pi ( inches^{2} )[/tex]