Sagot :
Answer:
The number of permutations with identical objects is
[tex]N=\frac{r!}{r_{1}!r_{2}!r_{3}!...r_{k}!}[/tex]
In this problem, [tex]r=8+4+2=14[/tex], [tex]r_{1} =8[/tex], [tex]r_{2} =4[/tex] and [tex]r_{3} =2[/tex]
Therefore, the answer is:
[tex]N=\frac{14!}{8!4!2!} =45045[/tex]
Hi!
Answer: 45 045 ways
Solutions:
• Formula: n! / p!q!r!
• 14! / 8!4!2!
• Expand and calculate.
• (14)(13)(12)(11)(10)(9)(8!) / 8!4!2
• Calculate
• 2162160 / 4!2
• Reduce the fraction
• 1081080 / 4!
• Calculate
• 1081080 / 24
• 45045
°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°
Keep on learning tomodachi! <3