👤

A building contractor is planning to develop a subdivision consists of 8 one storey houses, 4 two storey houses and 2 split level houses. In how many distinguishable ways can the houses be arranged?

Sagot :

Answer:

The number of permutations with identical objects is

[tex]N=\frac{r!}{r_{1}!r_{2}!r_{3}!...r_{k}!}[/tex]

In this problem, [tex]r=8+4+2=14[/tex], [tex]r_{1} =8[/tex], [tex]r_{2} =4[/tex] and [tex]r_{3} =2[/tex]

Therefore, the answer is:

[tex]N=\frac{14!}{8!4!2!} =45045[/tex]

Hi!

Answer: 45 045 ways

Solutions:

• Formula: n! / p!q!r!

• 14! / 8!4!2!

• Expand and calculate.

• (14)(13)(12)(11)(10)(9)(8!) / 8!4!2

• Calculate

• 2162160 / 4!2

• Reduce the fraction

• 1081080 / 4!

• Calculate

• 1081080 / 24

• 45045

°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°•°

Keep on learning tomodachi! <3