👤

suppose t varies directly as m and inversely as the square of n, t=32 when m=16 and n=4 find t when m=24 and n=6.


pa-ayos po ng sagot kelangan lang


Sagot :

Answer:

Answer:

The value of t when m = 24 and n = 6 is 128.

Step-by-step explanation:

Mathematical Sentence:

t=\frac{mk}{n^2}t=

n

2

mk

Solution for the constant of variation or k:

Given: t=32t=32 , m=16m=16 , n=4n=4

Find: k=?k=?

Formula: t=\frac{mk}{n^2}t=

n

2

mk

Solution:

\begin{gathered}t=\frac{mk}{n^2}\\32=\frac{16k}{(4)^2}\\32=\frac{16k}{16}\\32=k\end{gathered}

t=

n

2

mk

32=

(4)

2

16k

32=

16

16k

32=k

Solution for t:

Given: k=32k=32 , m=24m=24 , n=6n=6

Find: t=?t=?

Formula: t=\frac{mk}{n^2}t=

n

2

mk

Solution:

\begin{gathered}t=\frac{mk}{n^2}\\t=\frac{24(32)}{6}\\t=4(32)\\\boxed{t=128}\end{gathered}

t=

n

2

mk

t=

6

24(32)

t=4(32)

t=128