Sagot :
PERMUTATIONS
________________________________
[tex] \blue{\bold{ANSWER : }}[/tex]
- [tex] \blue{\boxed{\bold{B. \: _4P_3= 24}}}[/tex]
≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈
Given:
- [tex] \tt n = 4 \: boys \: || \: r = 3 \: girls[/tex]
[tex] \blue{\bold{SOLUTION : }}[/tex]
To find if how many ways can be arranged the 4 boys and 3 girls by using linear permutation formula. Apply the n and r.
- [tex] \tt _nP_3 = \frac{n!}{(n - r)!} [/tex]
- [tex] \tt _4P_3= \frac{4!}{(4 - 3)!} [/tex]
- [tex] \tt _4P_3 = \frac{4!}{1!} [/tex]
- [tex] \tt _4P_3= \frac{4!}{1} [/tex]
- [tex] \tt _4P_3= 4! [/tex]
- [tex] \blue {\boxed {\tt {{_4P_r = 24}}}}[/tex]
Therefore, there are 24 ways can I arranged 4 boys and 3 girls alternately in a row.
________________________________
Hope it's help!