👤

graph the secant line on a circle given the x²+(y-1)²=4; y=x-1.​

Sagot :

Answer

Secant of the circle

center of the circle : (0. 1)

[tex][tex]d = \frac{1 - 0 + 1}{? \sqrt{ {1}^{2} + {1}^{2} } } = \sqrt{2} <r = 2 \\ \\ the \: line \: is \: secant \: of \: the \: circle \\ (d = r \: the \: line \: is \: tengent \: of \: the \\ circle) \\ (d < r \: the \: line \: is \: secant \: of \: the \: arde)[/tex]

[tex][tex]d = \frac{1 - 0 + 1}{? \sqrt{ {1}^{2} + {1}^{2} } } = \sqrt{2} <r = 2 \\ \\ the \: line \: is \: secant \: of \: the \: circle \\ (d = r \: the \: line \: is \: tengent \: of \: the \\ circle) \\ (d < r \: the \: line \: is \: secant \: of \: the \: arde)[/tex][/tex]