Sagot :
Answer
Secant of the circle
center of the circle : (0. 1)
[tex][tex]d = \frac{1 - 0 + 1}{? \sqrt{ {1}^{2} + {1}^{2} } } = \sqrt{2} <r = 2 \\ \\ the \: line \: is \: secant \: of \: the \: circle \\ (d = r \: the \: line \: is \: tengent \: of \: the \\ circle) \\ (d < r \: the \: line \: is \: secant \: of \: the \: arde)[/tex]
[tex][tex]d = \frac{1 - 0 + 1}{? \sqrt{ {1}^{2} + {1}^{2} } } = \sqrt{2} <r = 2 \\ \\ the \: line \: is \: secant \: of \: the \: circle \\ (d = r \: the \: line \: is \: tengent \: of \: the \\ circle) \\ (d < r \: the \: line \: is \: secant \: of \: the \: arde)[/tex][/tex]