Sagot :
[tex]\large\mathcal{PROBLEM:}[/tex]
A town is building a new swimming pool. An Olympic pool is rectangular with length 50 meters and width 25 meters. The new pool will be similar in shape, but only 40 meters long.
[tex] \\ [/tex]
[tex]\large\mathcal{SOLUTION:}[/tex]
Given :
- Length of olympic pool = 30 meters
- Width of Olympic pool = 25 meters
- Length of new pool = 40 meters
- Width of the new pool = ?
[tex] \\ [/tex]
The shapes are similar so,
[tex] \: \: \: \: \: \Longrightarrow\large\sf \frac{L_1}{L_2} = \frac{W_1}{W_2} [/tex]
[tex]\: \: \: \: \: \Longrightarrow\large\sf \frac{50}{40} = \frac{25}{x} [/tex]
[tex]\: \: \: \: \: \Longrightarrow\large\sf x = 25 \times \frac{2}{5} [/tex]
[tex] \: \: \: \: \: \Longrightarrow\large\tt\large{{\boxed{\underline{ \tt \green{ x = 20}}}}}[/tex]
[tex] \\ [/tex]
[tex]\large\mathcal{ANSWER :}[/tex]
- Therefore , the width of new pool is 20 meters.
====================
Find the perimeter of an Olympic pool and the new pool.
- Kindly check the image attached thank you.
[tex] \\ [/tex]
#CarryOnLearning
![View image SaTurnD](https://ph-static.z-dn.net/files/d5e/04f54dde95e01e505daaff115fd5d270.jpg)
![View image SaTurnD](https://ph-static.z-dn.net/files/d9e/5ce95b4d8b244ec7968c943e8b24cb0f.jpg)