👤

Find the sum of arithmetic sequence where the first term is "-3" the last term is "-29" and the common difference is "-2"​

Sagot :

Answer:

if sum po hanap niyo, -224 po yung answer

if yung arithmetic sequence naman hanap niyo, -3,-5,-7,-9,-11,-13,-15,-17,19,-21,-23,-25,-27,-29

Step-by-step explanation:

if yung sum hinahanap

[tex]a_{n}=a_{1}+ (n-1)d\\-29=-3+(n-1)-2\\-29=-3+(-2n)+2\\-29=-1+(-2n)\\\frac{-28}{-2} =\frac{-2n}{-2} \\14=n[/tex]

[tex]S_{n}=\frac{n}{2}(a_{1} +a_{n})\\S_{n}=\frac{14}{2} [-3+(-29)]\\S_{n}=\frac{14}{2} (-32)\\S_{n}=7(-32)\\S_{n}=-224[/tex]