👤

The sum of two numbers is 37. Their difference is 13 fine the smaller number​

Sagot :

✒️NUMBERS

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{PROBLEM}:} [/tex]

  • The sum of two numbers is 37. Their difference is 13, find the smaller number.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{ANSWER}:} [/tex]

[tex] \qquad \large \:\rm{12 \: is \: the \: smaller \: number} [/tex]

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

[tex] \large\underline{\mathbb{SOLUTION}:} [/tex]

» Let x and y be the larger and smaller number respectively. Create two equations by the given situations.

  • [tex] \begin{cases} x + y = 37 \\ x - y = 13 \end{cases} \quad \begin{align} \tt{(eq. \: 1)} \\ \tt{(eq. \: 2)} \end{align} [/tex]

» Find x in the first equation the substitute it to the second equation in terms of y.

  • [tex] \begin{cases} x = 37 - y \\ x - y = 13 \end{cases} [/tex]

  • [tex] \begin{cases} x = 37 - y \\ 37 - y - y = 13 \end{cases} [/tex]

  • [tex] \begin{cases} x = 37 - y \\ 37 - 2y = 13 \end{cases} [/tex]

  • [tex] \begin{cases} x = 37 - y \\ 2y = 37 - 13 \end{cases} [/tex]

  • [tex] \begin{cases} x = 37 - y \\ 2y = 24 \end{cases} [/tex]

  • [tex] \begin{cases} x = 37 - y \\ 2y/2 = 24/2 \end{cases} [/tex]

  • [tex] \begin{cases} x = 37 - y \\ y = 12 \end{cases} [/tex]

[tex] \therefore [/tex] The value of y or the smaller number is 12.

[tex]••••••••••••••••••••••••••••••••••••••••••••••••••[/tex]

(ノ^_^)ノ

The smaller number is 12.

Let [tex]m[/tex] and [tex]n[/tex] be the two numbers, to have the system of equations:

[tex]\begin{cases}m+n=37 \\ m-n=13 \end{cases}[/tex]

Add both equations

[tex](m+n)+(m-n)=37+13[/tex]

[tex]2m=50[/tex]

[tex]\displaystyle \therefore m=\frac{50}{2}=\boxed{25}[/tex]

Thus, one of the numbers is 25. Now, substitute [tex]m=25[/tex] to the first equation and solve for the other number [tex]n.[/tex]

[tex]m+n=37[/tex]

[tex]25+n=37[/tex]

[tex]\therefore n=37-25=\boxed{12}[/tex]

We are asked to find the smaller number, comparing 25 and 12, we know that the smaller between these numbers is 12. Therefore, the answer is 12.

Hope it helps.

Go Training: Other Questions